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Uniform Topology-Based Structure Descriptor Combined with Substructure Coding

for Estimating Partition Coefficients of Organic Compounds

Martin Junghans, Ernö Pretsch

Department of Organic Chemistry, Swiss Federal Institute of Technology (ETH), CH-8092 Zürich

Various structure descriptors of uniform length, based on path-counting of a node-colored molecular graph [1] or on interatomic distances in 3D structures, as well as substructure coding

have been investigated in view of predicting partition coefficients, Kow.  The dimensions of the structure vectors generated in a first step have been reduced by PCA or PLS.  A set of 245

molecules ( from CH3NH2 to C18H12 ) with experimental log Kow values were used for model building. With the best linear model, log Kow was estimated with an RMS error of 0.153 and a

maximal error of 0.67. Surprisingly, only minor improvements were achieved by including 3D information. A feed-forward back-propagation artificial neural network optimized for the above

problem with 19 input and 20 hidden nodes and 1 output node was somewhat less powerful.

Cross validation using 123 randomly selected molecules as training set and the remaining 122 molecules as test set  allowed predictions with an RMS error of 0.397 and a maximal error

of 1.34 in log Kow for the best linear model.

[1] J.-T. Clerc and A. L. Terkovics, Anal. Chem. Acta 253 (1990) 93-102

[2] J. Sadowski and J. Gasteiger, Chem. Rev. 93, (1993) 2567-2581

Representation in the Database

The 245 molecules were represen-
ted by connection tables containing
all non-hydrogen atoms and their
2D drawing coordinates. Aromatic
bonds were stored as alternating
single and double bonds.

2D Path-Counting

For each pair of atoms, the con-
necting bonds were counted, sorted
according to the number of bonds
and kind of atoms linked, and
added to obtain the topological
structure vector [1].

3D Path-Counting

Based on the connection tables and
the 2D drawing coordinates of the
molecules, low energy 3D confor-
mations were calculated using the
rule-based program ALCOGEN [2].
Path-counting was modified by
adding the Euclidean distance
between pairs of atoms divided by
the number of bonds for each path.

Substructure Coding

The set of potentially overlapping
substructures used contained
mainly functional groups. The
number of substructures was
determined for each molecule and
added to give the substructure
vector.

Collection of Information

2D, 3D and SUB matrices were
written containing the structure and
substructure vectors of all mole-
cules. Columns without variance
were removed.

Reduction of Dimensionality

The 2D and 3D matrices were
reduced to the first 32, the SUB
matrix to the first 16 principal
components by a separate PCA or
PLS analysis. The latter also used
the vector containing all experi-
mentally determined partition
coefficients.

Prediction Using an Artificial Neural Network (ANN)

Different topologies of a feed-forward back-propagation ANN were tested.
The best results were found with a 19-20-1 network, the input neurons using
nine principal components of 2D or 3D structure descriptors and ten principal
components of the substructure coding.
With the same training set as for MLR, 32 000 training cycles were found to
give the best prediction results for the test set.

Correlation Using Multiple Linear Regression (MLR)

The principal components leading to the best fit were selected. An F test
with a 95% statistical reliability was used as a criterion to avoid
overestimation of the linear model.

ANN vs. MLR

The maximal errors for predicting partition coefficients were about the same
with ANN as with MLR, whereas RMS errors were ca. 20% smaller with MLR.
When comparing the effects of 2D vs. 3D and of PCA vs. PLS, they were
almost the same for both ANN and MLR.
The main disadvantage of ANN lay not so much in the training time (the
network topology being very small) but in finding a good network topology,
which was very time-consuming.

Examination of the Regression Plots

The two plots (left) show the regression between experimental and calculated
values for correlation and prediction with MLR. Obviously, the deviation is
bigger for prediction but the distribution is symmetrical and no outliers are
found in either case.
Three of the five molecules with worst predictions are nitrobenzenes. While
correlations for 1–chloro- and 3-hydroxynitrobenzene with the experimental
values are poor, that for p–dinitrobenzene is found to be good. The poor
prediction value for the latter can be explained by it being the only dinitro
molecule of the whole data set, hence, prediction had to be made without a
corresponding molecule in the training set. The same holds for trichloro-
amide. For 1,4-pentadiene, both correlation and prediction are poor.

Conclusions

For predicting the partition coefficients, the description used seems to be a
good possibility to represent small and medium size organic molecules
containing heteroatoms.
It was found that PLS gives much better results than PCA. For a data set
without isomers, the use of 3D information, as mentioned above, is of only
little importance but, in general, it slightly improves the results.
The method does not provide information as to whether the predicted value is
based on a huge set of similar reference molecules or extrapolated.

Outlook

In order to achieve more reliable predictions of partition coefficients,
extrapolated values must be detected. This could be achieved by clustering
similar molecules of the training set and then investigating the position of
those with unknown values relative to these clusters. To this purpose, local
models for each cluster would have to be developed.

PCA vs. PLS

For the data set investigated, PLS proved to be the method of choice
because RMS and maximal errors for correlated and predicted values were
about halved as compared with PCA. Moreover, computation was as
effective as for PCA.

2D vs. 3D Description

The use of 3D information to calculate the structure descriptors yielded only
slight improvements. This can be explained as follows: The data set did not
contain any isomers (2D description is unable to distinguish between them)
and the 3D information was not used to calculate additional values, e.g.
volumes or surface properties of the molecules.

-1 0 1 2 3 4 5

-1.0

-0.5

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 4.5

 5.0

O O
N

OH

Cl

ClCl
NH2

O

O

O
N

O

O
N

Cl

O

O
N

log Kow experimental

lo
g

 K
o

w
 c

al
cu

la
te

d

Prediction of Partition Coefficients Using MLR

Prediction Using Multiple Linear Regression (MLR)

The data set was split randomly into a training set of 123 and a test set of
122 molecules.
For estimation purposes, the training set was treated exactly the same as the
complete set, with comparable RMS and maximal errors for each method.
The test set was used to predict the partition coefficients of molecules
unknown to the regression model.
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